▶️ Tematyka
- Eksport danych
- Eksport do pliku txt
- Eksport do pliku w formacie csv
- Import danych
- Import danych z pliku txt
- Import danych z pliku csv (separatorem dziesiętnym jest ,)
- Import danych z pliku csv (separatorem dziesiętnym jest .)
- Wklejanie ze schowka
- Katalog roboczy
- Podstawowe wykresy
- Elementy rachunku prawdopodobieństwa
📘 Eksport danych
# Uwaga. Przy eksporcie i później imporcie danych należy dostosować ścieżki dostępu
# do plików do własnego komputera.
dane=head(swiss) #Dane do eksportu.
dane
## Fertility Agriculture Examination Education Catholic
## Courtelary 80.2 17.0 15 12 9.96
## Delemont 83.1 45.1 6 9 84.84
## Franches-Mnt 92.5 39.7 5 5 93.40
## Moutier 85.8 36.5 12 7 33.77
## Neuveville 76.9 43.5 17 15 5.16
## Porrentruy 76.1 35.3 9 7 90.57
## Infant.Mortality
## Courtelary 22.2
## Delemont 22.2
## Franches-Mnt 20.2
## Moutier 20.3
## Neuveville 20.6
## Porrentruy 26.6
Eksport do pliku txt
📘 Import danych
Import danych z pliku txt
im1=read.table("swiss_dane.txt",header=T,sep="\t")
# Dla odczytu pliku a ustalonego katalogu przykładowa komenda może być następująca:
# im1=read.table("C:/Users/Ania/Desktop/swiss_dane.txt",header=T,sep="\t")
im1
## Fertility Agriculture Examination Education Catholic
## Courtelary 80.2 17.0 15 12 9.96
## Delemont 83.1 45.1 6 9 84.84
## Franches-Mnt 92.5 39.7 5 5 93.40
## Moutier 85.8 36.5 12 7 33.77
## Neuveville 76.9 43.5 17 15 5.16
## Porrentruy 76.1 35.3 9 7 90.57
## Infant.Mortality
## Courtelary 22.2
## Delemont 22.2
## Franches-Mnt 20.2
## Moutier 20.3
## Neuveville 20.6
## Porrentruy 26.6
Import danych z pliku csv (separatorem dziesiętnym jest ,)
## X Fertility Agriculture Examination Education Catholic
## 1 Courtelary 80.2 17.0 15 12 9.96
## 2 Delemont 83.1 45.1 6 9 84.84
## 3 Franches-Mnt 92.5 39.7 5 5 93.40
## 4 Moutier 85.8 36.5 12 7 33.77
## 5 Neuveville 76.9 43.5 17 15 5.16
## 6 Porrentruy 76.1 35.3 9 7 90.57
## Infant.Mortality
## 1 22.2
## 2 22.2
## 3 20.2
## 4 20.3
## 5 20.6
## 6 26.6
Import danych z pliku csv (separatorem dziesiętnym jest .)
## X Fertility Agriculture Examination Education Catholic
## 1 Courtelary 80.2 17.0 15 12 9.96
## 2 Delemont 83.1 45.1 6 9 84.84
## 3 Franches-Mnt 92.5 39.7 5 5 93.40
## 4 Moutier 85.8 36.5 12 7 33.77
## 5 Neuveville 76.9 43.5 17 15 5.16
## 6 Porrentruy 76.1 35.3 9 7 90.57
## Infant.Mortality
## 1 22.2
## 2 22.2
## 3 20.2
## 4 20.3
## 5 20.6
## 6 26.6
Wklejanie ze schowka
# Import danych za pomocą wklejenia danych ze schowka.
# Na początku pisze się kod, a następnie kopiuje dane, a potem wykonuje kod.
# Dane można skopiować również na początku.
im4=read.delim2("clipboard",header=T)
im4
## cena wartość ilość
## 1 5.64 231.30 41.0
## 2 5.94 246.93 41.6
## 3 5.79 237.34 41.0
## 4 5.49 225.09 41.0
## 5 5.58 223.26 40.0
## 6 5.68 227.20 40.0
## 7 5.09 193.42 38.0
## 8 5.16 206.40 40.0
📘 Katalog roboczy
## [1] "E:/Doc_UE/RStudio/Samouczek"
# Zmiana katalogu roboczego.
# Zamieniamy obecny katalog roboczy, żeby pracować w innym katalogu i nie musieć podawać ścieżki dostępu do plików przy imporcie czy eksporcie danych.
setwd("C:/Users/Ania/Desktop")
## Error in setwd("C:/Users/Ania/Desktop"): nie można zmienić katalogu roboczego
## [1] "E:/Doc_UE/RStudio/Samouczek"
# Eksport pliku do folderu o domyślnej lokalizacji.
write.csv2(dane,"iris1.csv") #Nie podaje się już ścieżki dostępu, tylko jak ma się nazywać plik zz danymi i jego rozszerzenie (w cudzysłowie).
# Import pliku z folderu o domyślnej lokalizacji.
read.csv2("iris1.csv") #Nie podaje się już ścieżki dostępu do pliku, tylko w cudzysłowie zamieszcza się nazwę i rozszerzenie pliku, który chcesię zaimportować do R.
## X Fertility Agriculture Examination Education Catholic
## 1 Courtelary 80.2 17.0 15 12 9.96
## 2 Delemont 83.1 45.1 6 9 84.84
## 3 Franches-Mnt 92.5 39.7 5 5 93.40
## 4 Moutier 85.8 36.5 12 7 33.77
## 5 Neuveville 76.9 43.5 17 15 5.16
## 6 Porrentruy 76.1 35.3 9 7 90.57
## Infant.Mortality
## 1 22.2
## 2 22.2
## 3 20.2
## 4 20.3
## 5 20.6
## 6 26.6
📘 Podstawowe wykresy
## uruchamianie serwera httpd dla pomocy ... wykonano
## [1] "ts"
Histogram
## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## 6 10.8 83 19.7
## 7 11.0 66 15.6
## 8 11.0 75 18.2
## 9 11.1 80 22.6
## 10 11.2 75 19.9
## 11 11.3 79 24.2
## 12 11.4 76 21.0
## 13 11.4 76 21.4
## 14 11.7 69 21.3
## 15 12.0 75 19.1
## 16 12.9 74 22.2
## 17 12.9 85 33.8
## 18 13.3 86 27.4
## 19 13.7 71 25.7
## 20 13.8 64 24.9
## 21 14.0 78 34.5
## 22 14.2 80 31.7
## 23 14.5 74 36.3
## 24 16.0 72 38.3
## 25 16.3 77 42.6
## 26 17.3 81 55.4
## 27 17.5 82 55.7
## 28 17.9 80 58.3
## 29 18.0 80 51.5
## 30 18.0 80 51.0
## 31 20.6 87 77.0
## [1] "white" "aliceblue" "antiquewhite"
## [4] "antiquewhite1" "antiquewhite2" "antiquewhite3"
## [7] "antiquewhite4" "aquamarine" "aquamarine1"
## [10] "aquamarine2" "aquamarine3" "aquamarine4"
## [13] "azure" "azure1" "azure2"
## [16] "azure3" "azure4" "beige"
## [19] "bisque" "bisque1" "bisque2"
## [22] "bisque3" "bisque4" "black"
## [25] "blanchedalmond" "blue" "blue1"
## [28] "blue2" "blue3" "blue4"
## [31] "blueviolet" "brown" "brown1"
## [34] "brown2" "brown3" "brown4"
## [37] "burlywood" "burlywood1" "burlywood2"
## [40] "burlywood3" "burlywood4" "cadetblue"
## [43] "cadetblue1" "cadetblue2" "cadetblue3"
## [46] "cadetblue4" "chartreuse" "chartreuse1"
## [49] "chartreuse2" "chartreuse3" "chartreuse4"
## [52] "chocolate" "chocolate1" "chocolate2"
## [55] "chocolate3" "chocolate4" "coral"
## [58] "coral1" "coral2" "coral3"
## [61] "coral4" "cornflowerblue" "cornsilk"
## [64] "cornsilk1" "cornsilk2" "cornsilk3"
## [67] "cornsilk4" "cyan" "cyan1"
## [70] "cyan2" "cyan3" "cyan4"
## [73] "darkblue" "darkcyan" "darkgoldenrod"
## [76] "darkgoldenrod1" "darkgoldenrod2" "darkgoldenrod3"
## [79] "darkgoldenrod4" "darkgray" "darkgreen"
## [82] "darkgrey" "darkkhaki" "darkmagenta"
## [85] "darkolivegreen" "darkolivegreen1" "darkolivegreen2"
## [88] "darkolivegreen3" "darkolivegreen4" "darkorange"
## [91] "darkorange1" "darkorange2" "darkorange3"
## [94] "darkorange4" "darkorchid" "darkorchid1"
## [97] "darkorchid2" "darkorchid3" "darkorchid4"
## [100] "darkred" "darksalmon" "darkseagreen"
## [103] "darkseagreen1" "darkseagreen2" "darkseagreen3"
## [106] "darkseagreen4" "darkslateblue" "darkslategray"
## [109] "darkslategray1" "darkslategray2" "darkslategray3"
## [112] "darkslategray4" "darkslategrey" "darkturquoise"
## [115] "darkviolet" "deeppink" "deeppink1"
## [118] "deeppink2" "deeppink3" "deeppink4"
## [121] "deepskyblue" "deepskyblue1" "deepskyblue2"
## [124] "deepskyblue3" "deepskyblue4" "dimgray"
## [127] "dimgrey" "dodgerblue" "dodgerblue1"
## [130] "dodgerblue2" "dodgerblue3" "dodgerblue4"
## [133] "firebrick" "firebrick1" "firebrick2"
## [136] "firebrick3" "firebrick4" "floralwhite"
## [139] "forestgreen" "gainsboro" "ghostwhite"
## [142] "gold" "gold1" "gold2"
## [145] "gold3" "gold4" "goldenrod"
## [148] "goldenrod1" "goldenrod2" "goldenrod3"
## [151] "goldenrod4" "gray" "gray0"
## [154] "gray1" "gray2" "gray3"
## [157] "gray4" "gray5" "gray6"
## [160] "gray7" "gray8" "gray9"
## [163] "gray10" "gray11" "gray12"
## [166] "gray13" "gray14" "gray15"
## [169] "gray16" "gray17" "gray18"
## [172] "gray19" "gray20" "gray21"
## [175] "gray22" "gray23" "gray24"
## [178] "gray25" "gray26" "gray27"
## [181] "gray28" "gray29" "gray30"
## [184] "gray31" "gray32" "gray33"
## [187] "gray34" "gray35" "gray36"
## [190] "gray37" "gray38" "gray39"
## [193] "gray40" "gray41" "gray42"
## [196] "gray43" "gray44" "gray45"
## [199] "gray46" "gray47" "gray48"
## [202] "gray49" "gray50" "gray51"
## [205] "gray52" "gray53" "gray54"
## [208] "gray55" "gray56" "gray57"
## [211] "gray58" "gray59" "gray60"
## [214] "gray61" "gray62" "gray63"
## [217] "gray64" "gray65" "gray66"
## [220] "gray67" "gray68" "gray69"
## [223] "gray70" "gray71" "gray72"
## [226] "gray73" "gray74" "gray75"
## [229] "gray76" "gray77" "gray78"
## [232] "gray79" "gray80" "gray81"
## [235] "gray82" "gray83" "gray84"
## [238] "gray85" "gray86" "gray87"
## [241] "gray88" "gray89" "gray90"
## [244] "gray91" "gray92" "gray93"
## [247] "gray94" "gray95" "gray96"
## [250] "gray97" "gray98" "gray99"
## [253] "gray100" "green" "green1"
## [256] "green2" "green3" "green4"
## [259] "greenyellow" "grey" "grey0"
## [262] "grey1" "grey2" "grey3"
## [265] "grey4" "grey5" "grey6"
## [268] "grey7" "grey8" "grey9"
## [271] "grey10" "grey11" "grey12"
## [274] "grey13" "grey14" "grey15"
## [277] "grey16" "grey17" "grey18"
## [280] "grey19" "grey20" "grey21"
## [283] "grey22" "grey23" "grey24"
## [286] "grey25" "grey26" "grey27"
## [289] "grey28" "grey29" "grey30"
## [292] "grey31" "grey32" "grey33"
## [295] "grey34" "grey35" "grey36"
## [298] "grey37" "grey38" "grey39"
## [301] "grey40" "grey41" "grey42"
## [304] "grey43" "grey44" "grey45"
## [307] "grey46" "grey47" "grey48"
## [310] "grey49" "grey50" "grey51"
## [313] "grey52" "grey53" "grey54"
## [316] "grey55" "grey56" "grey57"
## [319] "grey58" "grey59" "grey60"
## [322] "grey61" "grey62" "grey63"
## [325] "grey64" "grey65" "grey66"
## [328] "grey67" "grey68" "grey69"
## [331] "grey70" "grey71" "grey72"
## [334] "grey73" "grey74" "grey75"
## [337] "grey76" "grey77" "grey78"
## [340] "grey79" "grey80" "grey81"
## [343] "grey82" "grey83" "grey84"
## [346] "grey85" "grey86" "grey87"
## [349] "grey88" "grey89" "grey90"
## [352] "grey91" "grey92" "grey93"
## [355] "grey94" "grey95" "grey96"
## [358] "grey97" "grey98" "grey99"
## [361] "grey100" "honeydew" "honeydew1"
## [364] "honeydew2" "honeydew3" "honeydew4"
## [367] "hotpink" "hotpink1" "hotpink2"
## [370] "hotpink3" "hotpink4" "indianred"
## [373] "indianred1" "indianred2" "indianred3"
## [376] "indianred4" "ivory" "ivory1"
## [379] "ivory2" "ivory3" "ivory4"
## [382] "khaki" "khaki1" "khaki2"
## [385] "khaki3" "khaki4" "lavender"
## [388] "lavenderblush" "lavenderblush1" "lavenderblush2"
## [391] "lavenderblush3" "lavenderblush4" "lawngreen"
## [394] "lemonchiffon" "lemonchiffon1" "lemonchiffon2"
## [397] "lemonchiffon3" "lemonchiffon4" "lightblue"
## [400] "lightblue1" "lightblue2" "lightblue3"
## [403] "lightblue4" "lightcoral" "lightcyan"
## [406] "lightcyan1" "lightcyan2" "lightcyan3"
## [409] "lightcyan4" "lightgoldenrod" "lightgoldenrod1"
## [412] "lightgoldenrod2" "lightgoldenrod3" "lightgoldenrod4"
## [415] "lightgoldenrodyellow" "lightgray" "lightgreen"
## [418] "lightgrey" "lightpink" "lightpink1"
## [421] "lightpink2" "lightpink3" "lightpink4"
## [424] "lightsalmon" "lightsalmon1" "lightsalmon2"
## [427] "lightsalmon3" "lightsalmon4" "lightseagreen"
## [430] "lightskyblue" "lightskyblue1" "lightskyblue2"
## [433] "lightskyblue3" "lightskyblue4" "lightslateblue"
## [436] "lightslategray" "lightslategrey" "lightsteelblue"
## [439] "lightsteelblue1" "lightsteelblue2" "lightsteelblue3"
## [442] "lightsteelblue4" "lightyellow" "lightyellow1"
## [445] "lightyellow2" "lightyellow3" "lightyellow4"
## [448] "limegreen" "linen" "magenta"
## [451] "magenta1" "magenta2" "magenta3"
## [454] "magenta4" "maroon" "maroon1"
## [457] "maroon2" "maroon3" "maroon4"
## [460] "mediumaquamarine" "mediumblue" "mediumorchid"
## [463] "mediumorchid1" "mediumorchid2" "mediumorchid3"
## [466] "mediumorchid4" "mediumpurple" "mediumpurple1"
## [469] "mediumpurple2" "mediumpurple3" "mediumpurple4"
## [472] "mediumseagreen" "mediumslateblue" "mediumspringgreen"
## [475] "mediumturquoise" "mediumvioletred" "midnightblue"
## [478] "mintcream" "mistyrose" "mistyrose1"
## [481] "mistyrose2" "mistyrose3" "mistyrose4"
## [484] "moccasin" "navajowhite" "navajowhite1"
## [487] "navajowhite2" "navajowhite3" "navajowhite4"
## [490] "navy" "navyblue" "oldlace"
## [493] "olivedrab" "olivedrab1" "olivedrab2"
## [496] "olivedrab3" "olivedrab4" "orange"
## [499] "orange1" "orange2" "orange3"
## [502] "orange4" "orangered" "orangered1"
## [505] "orangered2" "orangered3" "orangered4"
## [508] "orchid" "orchid1" "orchid2"
## [511] "orchid3" "orchid4" "palegoldenrod"
## [514] "palegreen" "palegreen1" "palegreen2"
## [517] "palegreen3" "palegreen4" "paleturquoise"
## [520] "paleturquoise1" "paleturquoise2" "paleturquoise3"
## [523] "paleturquoise4" "palevioletred" "palevioletred1"
## [526] "palevioletred2" "palevioletred3" "palevioletred4"
## [529] "papayawhip" "peachpuff" "peachpuff1"
## [532] "peachpuff2" "peachpuff3" "peachpuff4"
## [535] "peru" "pink" "pink1"
## [538] "pink2" "pink3" "pink4"
## [541] "plum" "plum1" "plum2"
## [544] "plum3" "plum4" "powderblue"
## [547] "purple" "purple1" "purple2"
## [550] "purple3" "purple4" "red"
## [553] "red1" "red2" "red3"
## [556] "red4" "rosybrown" "rosybrown1"
## [559] "rosybrown2" "rosybrown3" "rosybrown4"
## [562] "royalblue" "royalblue1" "royalblue2"
## [565] "royalblue3" "royalblue4" "saddlebrown"
## [568] "salmon" "salmon1" "salmon2"
## [571] "salmon3" "salmon4" "sandybrown"
## [574] "seagreen" "seagreen1" "seagreen2"
## [577] "seagreen3" "seagreen4" "seashell"
## [580] "seashell1" "seashell2" "seashell3"
## [583] "seashell4" "sienna" "sienna1"
## [586] "sienna2" "sienna3" "sienna4"
## [589] "skyblue" "skyblue1" "skyblue2"
## [592] "skyblue3" "skyblue4" "slateblue"
## [595] "slateblue1" "slateblue2" "slateblue3"
## [598] "slateblue4" "slategray" "slategray1"
## [601] "slategray2" "slategray3" "slategray4"
## [604] "slategrey" "snow" "snow1"
## [607] "snow2" "snow3" "snow4"
## [610] "springgreen" "springgreen1" "springgreen2"
## [613] "springgreen3" "springgreen4" "steelblue"
## [616] "steelblue1" "steelblue2" "steelblue3"
## [619] "steelblue4" "tan" "tan1"
## [622] "tan2" "tan3" "tan4"
## [625] "thistle" "thistle1" "thistle2"
## [628] "thistle3" "thistle4" "tomato"
## [631] "tomato1" "tomato2" "tomato3"
## [634] "tomato4" "turquoise" "turquoise1"
## [637] "turquoise2" "turquoise3" "turquoise4"
## [640] "violet" "violetred" "violetred1"
## [643] "violetred2" "violetred3" "violetred4"
## [646] "wheat" "wheat1" "wheat2"
## [649] "wheat3" "wheat4" "whitesmoke"
## [652] "yellow" "yellow1" "yellow2"
## [655] "yellow3" "yellow4" "yellowgreen"
## [1] "grey40" "grey89" "grey86" "slategray"
## [5] "olivedrab3" "sienna4" "plum4" "cornsilk1"
## [9] "lightcoral" "mediumorchid2"
Wykres pudełkowy
## Girth Height Volume
## 1 8.3 70 10.3
## 2 8.6 65 10.3
## 3 8.8 63 10.2
## 4 10.5 72 16.4
## 5 10.7 81 18.8
## 6 10.8 83 19.7
Wykres słupkowy
## weight feed
## 1 179 horsebean
## 2 160 horsebean
## 3 136 horsebean
## 4 227 horsebean
## 5 217 horsebean
## 6 168 horsebean
## [1] horsebean horsebean horsebean horsebean horsebean horsebean horsebean
## [8] horsebean horsebean horsebean linseed linseed linseed linseed
## [15] linseed linseed linseed linseed linseed linseed linseed
## [22] linseed soybean soybean soybean soybean soybean soybean
## [29] soybean soybean soybean soybean soybean soybean soybean
## [36] soybean sunflower sunflower sunflower sunflower sunflower sunflower
## [43] sunflower sunflower sunflower sunflower sunflower sunflower meatmeal
## [50] meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal meatmeal
## [57] meatmeal meatmeal meatmeal casein casein casein casein
## [64] casein casein casein casein casein casein casein
## [71] casein
## Levels: casein horsebean linseed meatmeal soybean sunflower
# barplot(chickwts$feed)
# Powyższy kod nie zadziała, ponieważ dane powinny być wektorem lub macierzą.
t=table(chickwts$feed)
t
##
## casein horsebean linseed meatmeal soybean sunflower
## 12 10 12 11 14 12
📘 Elementy rachunku prawdopodobieństwa
# Elementy rachunku prawdopodobieństwa: generowanie wartości z rozkładów, gęstość, dystrybuanta i kwantyle.
Generowanie wartości z rozkładów
## [1] 0.663661029 0.737207632 1.185194239 -0.639784038 0.455718207
## [6] -0.121125555 -0.060011578 1.724591739 -0.970003484 -0.705763815
## [11] 2.745267291 0.005734573 -0.190608796 0.228148020 -0.257944166
## [16] 0.071950285 -0.979958663 0.376706193 0.198633308 1.247157955
## [1] 13.4617664 -1.9510993 26.5319143 30.8791513 22.9374222 17.8514230
## [7] 22.8787268 26.0717342 7.8761488 -5.8396177 38.0229916 27.4031349
## [13] 39.9167464 25.3795626 17.6772933 23.0212719 15.4932065 46.4466135
## [19] 7.4811643 14.8948796 21.4285714 29.5184909 24.4559478 38.5472827
## [25] -8.8336812 13.7816066 -1.4420144 15.7512748 40.9109695 28.9171889
## [31] 22.2844159 25.0161140 27.9129226 38.3494161 30.8453834 5.9732789
## [37] 17.5889788 33.1381900 -9.9519619 24.6582627 5.3415509 7.5619627
## [43] 10.0608623 26.5960617 18.2209738 16.2768193 21.8908736 12.5898190
## [49] 11.6948632 20.2343297 12.2306720 7.9973232 -0.2708146 27.2000297
## [55] 26.0410089 32.3468019 11.3126659 14.3306998 31.9872599 13.3895533
## [61] 29.0829639 27.4347567 21.8366002 36.2473378 29.5325971 34.8553535
## [67] 5.4564581 35.9389551 22.0067645 -12.1067415 18.2896181 34.3270786
## [73] 21.5674601 -4.9820654 24.9542461 24.1915089 47.3294781 20.4205197
## [79] 24.6066449 -4.2964577 8.7157172 19.5020421 11.8795873 22.7317571
## [85] 16.3782836 19.2304844 8.7769552 46.1361395 2.7234274 3.2453214
## [91] 35.0073992 23.2832662 27.5148795 25.2148862 3.4055892 16.4043321
## [97] 27.6565503 13.7552069 27.5621758 9.5624054
## [1] 19.0709368 22.1551001 -1.9042326 25.2036983 15.4195334 37.4743697
## [7] 5.8848813 4.5022888 17.3415006 14.1504120 15.2936710 18.0563477
## [13] 41.8203703 -7.2874232 -7.3305122 5.6203874 39.6977051 28.8288394
## [19] 21.4801035 21.0363860 29.7761427 25.7832826 6.6472551 17.4877387
## [25] 2.1020683 27.8558299 12.3875013 55.3969186 44.7104679 35.4896447
## [31] 28.2841179 9.8627847 2.7452104 8.4798604 41.8549881 3.5973551
## [37] 15.1024549 26.9189412 22.5748619 12.8901137 10.9409298 29.6137008
## [43] 4.1869191 16.2150847 20.2110435 14.4790360 7.3539014 43.0299086
## [49] 13.2010255 19.6800936 -23.9637874 14.1437513 4.5013403 23.4078499
## [55] 30.8580895 17.3633965 -3.5326969 4.7270049 33.1679167 13.2984038
## [61] 17.2999312 16.1988946 18.1953379 22.8100332 -1.1454724 -0.8600863
## [67] 21.5998812 0.5295292 45.5139165 30.0861151 27.2862420 3.8583841
## [73] 9.2265384 9.3680528 10.3017267 26.6542742 30.2601877 19.3719682
## [79] 25.8890233 32.8758616 8.1797736 2.4280145 11.8628715 8.6210813
## [85] 44.3837974 16.5778399 26.1506495 17.1918143 38.7223182 24.6236984
## [91] 8.5893015 14.8112653 16.7532451 17.6692389 16.3004390 43.0004755
## [97] 11.7240404 29.0553161 26.5349822 31.9097669
## [1] 1.7197622 1.8849113 2.7793542 2.0352542 2.0646439 2.8575325 2.2304581
## [8] 1.3674694 1.6565736 1.7771690 2.6120409 2.1799069 2.2003857 2.0553414
## [15] 1.7220794 2.8934566 2.2489252 1.0166914 2.3506780 1.7636043 1.4660881
## [22] 1.8910125 1.4869978 1.6355544 1.6874804 1.1566533 2.4188935 2.0766866
## [29] 1.4309315 2.6269075 2.2132321 1.8524643 2.4475628 2.4390667 2.4107905
## [36] 2.3443201 2.2769588 1.9690441 1.8470187 1.8097645 1.6526465 1.8960414
## [43] 1.3673018 3.0844780 2.6039810 1.4384457 1.7985576 1.7666723 2.3899826
## [50] 1.9583155 2.1266593 1.9857266 1.9785648 2.6843011 1.8871145 2.7582353
## [57] 1.2256236 2.2923069 2.0619271 2.1079708 2.1898197 1.7488383 1.8333963
## [64] 1.4907123 1.4641044 2.1517643 2.2241049 2.0265021 2.4611337 3.0250423
## [71] 1.7544844 0.8454156 2.5028693 1.6453996 1.6559957 2.5127857 1.8576135
## [78] 1.3896411 2.0906517 1.9305543 2.0028821 2.1926402 1.8146700 2.3221883
## [85] 1.8897567 2.1658910 2.5484195 2.2175907 1.8370342 2.5744038 2.4967519
## [92] 2.2741985 2.1193659 1.6860470 2.6803262 1.6998702 3.0936665 2.7663053
## [99] 1.8821498 1.4867895
## [1] 0.238726027 0.962358936 0.601365726 0.515029727 0.402573342 0.880246541
## [7] 0.364091865 0.288239281 0.170645235 0.172171746 0.482042606 0.252964929
## [13] 0.216254790 0.674376388 0.047663627 0.700853087 0.351888638 0.408943998
## [19] 0.820951324 0.918857348 0.282528330 0.961104794 0.728394428 0.686375082
## [25] 0.052843943 0.395220135 0.477845380 0.560253264 0.698261595 0.915683538
## [31] 0.618351227 0.428421509 0.542080367 0.058478489 0.260856857 0.397151953
## [37] 0.197744737 0.831927563 0.152887223 0.803418542 0.546826157 0.662317642
## [43] 0.171698494 0.633055360 0.311869747 0.724554346 0.398939825 0.969356411
## [49] 0.967398371 0.726702539 0.257216746 0.221787935 0.593045652 0.267521432
## [55] 0.531070399 0.785291671 0.168060811 0.404399181 0.471576278 0.868106807
## [61] 0.925707956 0.881977559 0.674186843 0.950166979 0.516444894 0.576519021
## [67] 0.336331206 0.347324631 0.020024301 0.502813046 0.871043414 0.006300784
## [73] 0.072057124 0.164211225 0.770334074 0.735184306 0.971875636 0.466472377
## [79] 0.074384513 0.648818124 0.758593170 0.137106081 0.396584595 0.224985329
## [85] 0.057958561 0.395892688 0.064928300 0.225886433 0.054629109 0.670282040
## [91] 0.297741783 0.100721582 0.071904097 0.880440569 0.754247402 0.816605888
## [97] 0.982140374 0.103599645 0.099041829 0.798831611
## [1] 0.69683236 0.82060066 -0.02475866 -0.30644712 -0.30056295 -3.47363186
## [7] -1.31714799 -0.46532917 -0.01932117 5.99328177 -0.02021276 -2.00872529
## [13] -0.57321111 -0.16850664 -1.41785209 -1.20204135 -0.52541258 1.23078376
## [19] 0.63466850 2.34977229 1.88108475 -2.20687007 6.41947266 -0.25537575
## [25] -0.66606686 -0.01114930 -0.06244739 0.18466027 -1.25469184 0.08335478
## [31] 0.35642587 -0.53703200 1.00405279 -0.43246746 -1.34543674 1.92487880
## [37] -0.09990203 -1.26894058 0.83961497 -0.15032212 -0.83106377 0.01523773
## [43] 1.00633019 -0.12547272 -1.77088587 -3.22061623 -0.07322264 -0.50701695
## [49] -0.50295934 0.07520585 0.18176418 -0.85664567 0.67830426 1.78504381
## [55] -0.24748408 0.93705785 1.97205423 0.21457114 0.36545186 1.70894197
## [61] -0.34914733 0.93052910 4.51244483 -1.46438907 1.56468817 0.49041375
## [67] 1.11727468 0.43312514 0.29718297 -2.04567260 -1.36525725 -0.66750687
## [73] -0.49447123 -0.93744377 0.51235989 -8.61233265 0.70151938 0.89078422
## [79] -0.21608493 -0.81058160 -0.25568636 -2.63293864 -1.00076993 -3.08952378
## [85] -0.01260136 -0.20001064 0.93324733 -0.06879633 2.80205973 -0.95441015
## [91] -0.78877949 0.42289498 0.75830163 0.53165633 0.85237062 0.55751630
## [97] 0.65719967 1.41166493 0.32995741 2.43177705
## [1] 3.3850922 3.2984545 1.6909650 0.1576374 6.6977146 0.4255763 2.1398074
## [8] 3.0006399 3.1373579 2.7302180 5.8218036 0.4584186 1.6201983 0.7657052
## [15] 2.9739183 4.1567176 5.0755977 1.1720594 1.3637716 3.0758988 2.2844511
## [22] 3.8891418 0.6878708 6.9350646 2.1324304 4.8828211 7.9019783 1.4766519
## [29] 0.5130345 1.5948243 1.9896741 2.0411105 2.6774314 5.5385065 2.2499958
## [36] 3.6797567 3.8610315 4.2479516 1.0161754 5.9954669 2.3432680 2.7945191
## [43] 3.2567545 0.9773518 4.6550916 1.8906219 9.3182640 2.7903987 1.0009019
## [50] 2.4556660 4.1543027 2.4323302 0.9571249 2.2230586 0.3827861 0.4611069
## [57] 1.7458361 1.7893021 3.1419871 0.1678722 0.4058235 3.9225606 5.0094145
## [64] 2.7821002 0.9680566 1.3273275 1.1724402 0.9700765 4.1080274 4.1016847
## [71] 0.3211031 3.6369040 2.6853121 0.6705557 0.7415162 2.1502738 6.2488106
## [78] 2.9134959 4.3211165 1.4858849 1.6249270 2.3603811 0.6411606 0.4162545
## [85] 2.3591057 2.3395796 4.2461522 2.3558489 3.5971023 1.0379425 4.3845427
## [92] 5.5239566 0.4184004 3.5731431 2.1469375 0.1211514 0.7123071 1.8005444
## [99] 1.9840761 2.8355945
## [1] 0.52610805 1.74521305 1.02604707 3.25032204 1.52430340 0.28097148
## [7] 0.38109784 0.55076467 0.69027447 0.48196860 4.41313923 0.73094071
## [13] 0.37996535 2.06320618 0.84712631 0.61603119 0.71032146 0.62933857
## [19] 2.82465565 0.41869146 2.67819390 1.77195322 0.53829047 1.08785238
## [25] 1.95254581 1.14638625 0.27337680 0.58384781 0.33364606 0.77739386
## [31] 0.48367768 1.58395506 0.85833052 0.08154664 0.28514547 0.84480764
## [37] 2.62597743 1.21076087 2.08760690 1.89972530 1.17307090 0.21546587
## [43] 1.24627808 1.35692310 17.71356434 0.20513635 1.58029619 2.90312814
## [49] 0.07009730 1.31514070 0.00564881 3.51205181 2.68952096 1.18568879
## [55] 1.58932593 2.01802763 1.59471709 0.75218091 0.59938150 1.70882973
## [61] 1.77348471 0.28766346 0.17464260 1.10959418 0.83223825 4.74271587
## [67] 3.58385752 0.09552937 1.26651119 0.28091568 0.48236156 12.00955112
## [73] 0.69463279 0.71923276 1.15728964 1.90554090 5.86638409 0.44790960
## [79] 0.09469444 2.63703334 0.09821284 0.21453281 0.17428717 3.00294331
## [85] 0.38385209 3.40359044 0.66721172 0.69316870 1.09003637 0.85520126
## [91] 3.29537360 0.66066119 0.27395316 0.10956574 0.26362624 0.53813684
## [97] 0.24114574 0.05285393 0.37716631 0.73218773
Gęstość
## [1] 0.3989423
## [1] 0.004431848
## [1] 0.004431848 0.005142641 0.005952532 0.006872767 0.007915452 0.009093563
## [7] 0.010420935 0.011912244 0.013582969 0.015449347 0.017528300 0.019837354
## [13] 0.022394530 0.025218220 0.028327038 0.031739652 0.035474593 0.039550042
## [19] 0.043983596 0.048792019 0.053990967 0.059594706 0.065615815 0.072064874
## [25] 0.078950158 0.086277319 0.094049077 0.102264925 0.110920835 0.120009001
## [31] 0.129517596 0.139430566 0.149727466 0.160383327 0.171368592 0.182649085
## [37] 0.194186055 0.205936269 0.217852177 0.229882141 0.241970725 0.254059056
## [43] 0.266085250 0.277984886 0.289691553 0.301137432 0.312253933 0.322972360
## [49] 0.333224603 0.342943855 0.352065327 0.360526962 0.368270140 0.375240347
## [55] 0.381387815 0.386668117 0.391042694 0.394479331 0.396952547 0.398443914
## [61] 0.398942280 0.398443914 0.396952547 0.394479331 0.391042694 0.386668117
## [67] 0.381387815 0.375240347 0.368270140 0.360526962 0.352065327 0.342943855
## [73] 0.333224603 0.322972360 0.312253933 0.301137432 0.289691553 0.277984886
## [79] 0.266085250 0.254059056 0.241970725 0.229882141 0.217852177 0.205936269
## [85] 0.194186055 0.182649085 0.171368592 0.160383327 0.149727466 0.139430566
## [91] 0.129517596 0.120009001 0.110920835 0.102264925 0.094049077 0.086277319
## [97] 0.078950158 0.072064874 0.065615815 0.059594706 0.053990967 0.048792019
## [103] 0.043983596 0.039550042 0.035474593 0.031739652 0.028327038 0.025218220
## [109] 0.022394530 0.019837354 0.017528300 0.015449347 0.013582969 0.011912244
## [115] 0.010420935 0.009093563 0.007915452 0.006872767 0.005952532 0.005142641
## [121] 0.004431848
## [1] -3.00000000 -2.89915966 -2.79831933 -2.69747899 -2.59663866 -2.49579832
## [7] -2.39495798 -2.29411765 -2.19327731 -2.09243697 -1.99159664 -1.89075630
## [13] -1.78991597 -1.68907563 -1.58823529 -1.48739496 -1.38655462 -1.28571429
## [19] -1.18487395 -1.08403361 -0.98319328 -0.88235294 -0.78151261 -0.68067227
## [25] -0.57983193 -0.47899160 -0.37815126 -0.27731092 -0.17647059 -0.07563025
## [31] 0.02521008 0.12605042 0.22689076 0.32773109 0.42857143 0.52941176
## [37] 0.63025210 0.73109244 0.83193277 0.93277311 1.03361345 1.13445378
## [43] 1.23529412 1.33613445 1.43697479 1.53781513 1.63865546 1.73949580
## [49] 1.84033613 1.94117647 2.04201681 2.14285714 2.24369748 2.34453782
## [55] 2.44537815 2.54621849 2.64705882 2.74789916 2.84873950 2.94957983
## [61] 3.05042017 3.15126050 3.25210084 3.35294118 3.45378151 3.55462185
## [67] 3.65546218 3.75630252 3.85714286 3.95798319 4.05882353 4.15966387
## [73] 4.26050420 4.36134454 4.46218487 4.56302521 4.66386555 4.76470588
## [79] 4.86554622 4.96638655 5.06722689 5.16806723 5.26890756 5.36974790
## [85] 5.47058824 5.57142857 5.67226891 5.77310924 5.87394958 5.97478992
## [91] 6.07563025 6.17647059 6.27731092 6.37815126 6.47899160 6.57983193
## [97] 6.68067227 6.78151261 6.88235294 6.98319328 7.08403361 7.18487395
## [103] 7.28571429 7.38655462 7.48739496 7.58823529 7.68907563 7.78991597
## [109] 7.89075630 7.99159664 8.09243697 8.19327731 8.29411765 8.39495798
## [115] 8.49579832 8.59663866 8.69747899 8.79831933 8.89915966 9.00000000
Przedstawienie kilku wykresów gęstości na 1 wykresie
## [1] -5.00000000 -4.91596639 -4.83193277 -4.74789916 -4.66386555 -4.57983193
## [7] -4.49579832 -4.41176471 -4.32773109 -4.24369748 -4.15966387 -4.07563025
## [13] -3.99159664 -3.90756303 -3.82352941 -3.73949580 -3.65546218 -3.57142857
## [19] -3.48739496 -3.40336134 -3.31932773 -3.23529412 -3.15126050 -3.06722689
## [25] -2.98319328 -2.89915966 -2.81512605 -2.73109244 -2.64705882 -2.56302521
## [31] -2.47899160 -2.39495798 -2.31092437 -2.22689076 -2.14285714 -2.05882353
## [37] -1.97478992 -1.89075630 -1.80672269 -1.72268908 -1.63865546 -1.55462185
## [43] -1.47058824 -1.38655462 -1.30252101 -1.21848739 -1.13445378 -1.05042017
## [49] -0.96638655 -0.88235294 -0.79831933 -0.71428571 -0.63025210 -0.54621849
## [55] -0.46218487 -0.37815126 -0.29411765 -0.21008403 -0.12605042 -0.04201681
## [61] 0.04201681 0.12605042 0.21008403 0.29411765 0.37815126 0.46218487
## [67] 0.54621849 0.63025210 0.71428571 0.79831933 0.88235294 0.96638655
## [73] 1.05042017 1.13445378 1.21848739 1.30252101 1.38655462 1.47058824
## [79] 1.55462185 1.63865546 1.72268908 1.80672269 1.89075630 1.97478992
## [85] 2.05882353 2.14285714 2.22689076 2.31092437 2.39495798 2.47899160
## [91] 2.56302521 2.64705882 2.73109244 2.81512605 2.89915966 2.98319328
## [97] 3.06722689 3.15126050 3.23529412 3.31932773 3.40336134 3.48739496
## [103] 3.57142857 3.65546218 3.73949580 3.82352941 3.90756303 3.99159664
## [109] 4.07563025 4.15966387 4.24369748 4.32773109 4.41176471 4.49579832
## [115] 4.57983193 4.66386555 4.74789916 4.83193277 4.91596639 5.00000000
plot(z,dnorm(z),type="l")
lines(z,dnorm(z,0,3),type="l",lty="dotted")
lines(z,dnorm(z,0,0.5),type="l",lty="dashed")
# Ostatnia linia wychodzi poza obszar wykresu, ponieważ te linie dorysowywane są do wykresu,
# czyli nie zmieniają jego rozmiaru.
# Wykres uzyskany za pomocą funkcji plot() determinuje rozmiar wykresu na stałe.
z=seq(-10,10,length=120)
plot(z,dnorm(z,0,1),type="l")
lines(z,dnorm(z,2,1),type="l",lty="dotted")
lines(z,dnorm(z,0,2),type="l",lty="dashed")
Dodawanie legendy do wykresu
Przykład
# Wygeneruj 100 wartości z rozkładu normalnego o średniej równej -3 i odchyleniu standardowym równym 1.
# Wygeneruj 100 wartości z rozkładu t-Studenta o 8 stopniach swobody.
# Wygeneruj 100 wartości z rozkładu Chikwadrat o 2 stopniach swobody.
# Przedstaw histogramy dla wygenerowanych wartości na 1 wykresie jeden obok drugiego.
x=rnorm(100,-3,1)
y=rt(100,8)
z=rchisq(100,2)
par(mfrow=c(1,3))
hist(x)
hist(y)
hist(z)